Indoor-Outdoor Volatile Organic Compounds (VOCs) Levels in Urban and Industrial Area of Dhaka City, Bangladesh

Mitali Parvin

Prof. dr. ir. Herman Van Langenhove

Dr. ir. Christophe Walgraeve

Do Hoai Duc

Introduction

Volatile Organic Compounds (VOCs)

EU

- Organic compounds
- Vapor pressure greater than 10 Pa at 20°C

VOCs » impact on human health and global environment

- ☐ Health effects
- Indoors
- Outdoors
- Environmental effects
- Stratospheric ozone depletion
- Tropospheric ozone formation
- Global warming

http://oecotextiles.wordpress.com

Objectives

Main Objective:

To investigate the presence and ambient concentration levels of VOCs in both indoor and outdoor environment in urban and industrial areas of Dhaka city, Bangladesh

Specific objectives:

- Comparison on the indoor and outdoor VOCs in the urban and industrial area of Dhaka city
 - » TVOCs, individual group and subgroup of TVOCs, BTEX and benzene levels
- Indoor-to-outdoor ratio(I/O)
- Source identification » diagnostic ratios and correlation of coefficients
- Estimation of ozone formation potential of the measured VOCs
- Comparison with other countries studies

Materials and Methods Sampling plan

Two Sampling Campaigns in Dhaka

- 3 days sampling/site (1 weekend and 2 weekdays)
- 2 times sampling/day-Morning and afternoon at rush hour
- 6 sampling sites with 6 samples/site
- In total 36 samples and 3 blanks
- Roadside sample: heavy traffic

Materials and Methods

Active sampling: portable pump (Gilair)

Sorbent: Tenax TA Tube

Internal Standard: Tol-d₈

Analysis: TD-GC-MS analysis

Quantification

$$C_a = \frac{m_a}{Q \times t} = \frac{m_a}{V}$$
 Q: flow rate of sampling pump = 93mL/min

V : volume of sampled air

t : sampling time = 30min

C_a: concentration of analyte

Results and Discussion Total Volatile Organic Compounds (TVOCs) Groups

Mean of Total Benzene-Toluene-Ethylbenzene-Xylene (∑BTEX)

Lowest ∑BTEX : urban park (mean:10µg/m³)

Country level comparison for BTEX in urban area

Benzene-Toluene-Ethylbenzene-Xylene (∑BTEX)

Country level comparison of mean Benzene concentration

Conclusions and Recommendation

- This study provide information on a spectrum of 39 VOCs concentration levels;
- ➤ The differences in concentration profile of VOCs at urban and industrial area in Dhaka were interpreted by TVOCs, BTEX and benzene values;
- The benzene concentration level was higher than the guidance value (indoor: 2μg/m³ and outdoor: 5μg/m³) except urban park;
- Aromatic compounds were the major contributors (42-61%) and Halogenated compounds were minor contributors(<1%);</p>
- Among the countries, the highest ∑BTEX (mean: 97µg/m³) was measured in Hanoi, Vietnam and the lowest indoor benzene measured in the Manila, Philippines (mean:1.24µg/m³);
- Further studies concerning more sites and seasonal variations are recommended.

Thank You

Materials and Methods(Extra)

Sample Preparation

- Conditioning of Tenax TA tubes
- Preparation of closed two-phase system(CTS)
- Loading with internal standard (Tol-d₈)

Sampling

- •Sampling Campaign in Dhaka City (30/08 2013 to11/09/2013)
- Active sampling portable pump (Gilair)

1st Standard Calibration

•TD-GC-MS Standard calibration

Separation & Detection

- •TD-GC-MS Analysis
- •Full scan mode masses from m/z 29 to 300

Identification

- •Chromatogram, mass spectrum,
- Total ion current (TIC),
- •Selective ion monitoring (SIM) mode,
- Standard Calibration, Library using X-calibur
- •TD-GC-MS Standard calibration
- RSRF : Relative sample response factor

2nd standard calibration

Quantification

& Data Interpretat<u>ion</u> •Excel & S-plus(Spotfire S+ 8.2)

Thermal Desorption-Gas Chromatography-Mass Spectrometry

Materials and Methods(Extra)

Quantification

$$RSRF = \frac{SRF_a}{SRF_{st}}$$

$$RSRF_{L,L} \approx RSRF_{G,G}$$

$$= {A_a / A_{st} \times {m_{st} / m_a}}$$

$$m_a = \frac{A_a \times m_{st}}{RSRF_{LL} \times A_{st}}$$

$$C_a = \frac{m_a}{0 \times t} = \frac{m_a}{V}$$

RSRF_{L,L}: loaded from liquid phase

RSRF_{G,G}: loaded from gas phase

SRF_a: sample response factor of the analyte

SRF_{st}: sample response factor of standard

m_a: mass of analyte

 m_{st} : mass of internal standard(Tol-d₈)

 A_a : peak area of the analyte

 A_{st} : peak area of the internal standard

V : volume of sampled air

Q : flow rate of sampling pump

t : sampling time

C_a: concentration of analyte

Sampling sites(Extra)

Urban Sampling

